首页> 外文OA文献 >Lorenz, Godel and Penrose: new perspectives on determinism and causality in fundamental physics
【2h】

Lorenz, Godel and Penrose: new perspectives on determinism and causality in fundamental physics

机译:洛伦兹,戈德尔和彭罗斯:基本物理学中决定论和因果关系的新观点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite being known for his pioneering work on chaotic unpredictability, the key discovery at the core of meteorologist Ed Lorenz's work is the link between space-time calculus and state-space fractal geometry. Indeed, properties of Lorenz's fractal invariant set relate space-time calculus to deep areas of mathematics such as Gödel's Incompleteness Theorem. Could such properties also provide new perspectives on deep unsolved issues in fundamental physics? Recent developments in cosmology motivate what is referred to as the 'cosmological invariant set postulate': that the universe (Formula presented.) can be considered a deterministic dynamical system evolving on a causal measure-zero fractal invariant set (Formula presented.) in its state space. Symbolic representations of (Formula presented.) are constructed explicitly based on permutation representations of quaternions. The resulting 'invariant set theory' provides some new perspectives on determinism and causality in fundamental physics. For example, while the cosmological invariant set appears to have a rich enough structure to allow a description of (quantum) probability, its measure-zero character ensures it is sparse enough to prevent invariant set theory being constrained by the Bell inequality (consistent with a partial violation of the so-called measurement independence postulate). The primacy of geometry as embodied in the proposed theory extends the principles underpinning general relativity. As a result, the physical basis for contemporary programmes which apply standard field quantisation to some putative gravitational lagrangian is questioned. Consistent with Penrose's suggestion of a deterministic but non-computable theory of fundamental physics, an alternative 'gravitational theory of the quantum' is proposed based on the geometry of (Formula presented.), with new perspectives on the problem of black-hole information loss and potential observational consequences for the dark universe. © 2014 © 2014 Taylor and Francis.
机译:尽管以其关于混沌不可预测性的开创性工作而闻名,但气象学家埃德·洛伦兹(Ed Lorenz)的核心发现是时空演算与状态空间分形几何之间的联系。确实,洛伦兹分形不变集的性质将时空演算与诸如哥德尔不完全性定理这样的数学深层领域联系在一起。这样的性质还能为基础物理学中尚未解决的深层问题提供新的观点吗?宇宙学的最新发展激发了所谓的“宇宙不变性假设”:宇宙(公式表示)可以被认为是在因果度量零分形不变集(公式表示)上发展的确定性动力学系统。状态空间。 (表示公式)的符号表示形式是根据四元数的置换表示形式显式构造的。由此产生的“不变集理论”为基础物理学中的确定性和因果关系提供了一些新观点。例如,虽然宇宙不变集似乎具有足够丰富的结构以允许描述(量子)概率,但其零度量特性确保其足够稀疏以防止不变集理论受到Bell不等式的约束(与部分违反所谓的测量独立性假设)。所提出的理论所体现的几何学的首要地位扩展了支持广义相对论的原理。结果,对当代程序的物理基础提出了质疑,这些程序将标准场量化应用于某些假定的拉格朗日算子。与彭罗斯(Penrose)关于确定性但无可争议的基础物理学理论的建议相一致,基于(公式)的几何学,提出了另一种“量子引力理论”,并对黑洞信息丢失问题提出了新观点。以及对黑暗宇宙的潜在观测后果。 ©2014©2014 Taylor和Francis。

著录项

  • 作者

    Palmer, TN;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号